metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊2Dic10, C24.23D10, C10.12+ 1+4, (C22×C10)⋊5Q8, C4⋊Dic5⋊3C22, C5⋊1(C23⋊2Q8), C20.48D4⋊3C2, C10.6(C22×Q8), (C2×C10).27C24, C22⋊C4.86D10, C2.6(D4⋊6D10), (C2×C20).127C23, (C2×Dic10)⋊2C22, (C22×C4).169D10, C10.D4⋊1C22, (C2×Dic5).8C23, C22.5(C2×Dic10), C2.8(C22×Dic10), C22.69(C23×D5), Dic5.14D4⋊1C2, (C23×C10).53C22, (C22×C20).71C22, C23.144(C22×D5), C23.D5.85C22, (C22×C10).119C23, (C22×Dic5).76C22, (C2×C10).49(C2×Q8), (C2×C22⋊C4).18D5, (C10×C22⋊C4).18C2, (C2×C4).133(C22×D5), (C2×C23.D5).22C2, (C5×C22⋊C4).97C22, SmallGroup(320,1155)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊2Dic10
G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=d10, ab=ba, dad-1=ac=ca, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 782 in 242 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C22⋊C4, C22⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23⋊2Q8, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C2×Dic10, C22×Dic5, C22×C20, C23×C10, Dic5.14D4, C20.48D4, C2×C23.D5, C10×C22⋊C4, C23⋊2Dic10
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C24, D10, C22×Q8, 2+ 1+4, Dic10, C22×D5, C23⋊2Q8, C2×Dic10, C23×D5, C22×Dic10, D4⋊6D10, C23⋊2Dic10
(2 53)(4 55)(6 57)(8 59)(10 41)(12 43)(14 45)(16 47)(18 49)(20 51)(21 73)(23 75)(25 77)(27 79)(29 61)(31 63)(33 65)(35 67)(37 69)(39 71)
(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 61)(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 76 11 66)(2 75 12 65)(3 74 13 64)(4 73 14 63)(5 72 15 62)(6 71 16 61)(7 70 17 80)(8 69 18 79)(9 68 19 78)(10 67 20 77)(21 45 31 55)(22 44 32 54)(23 43 33 53)(24 42 34 52)(25 41 35 51)(26 60 36 50)(27 59 37 49)(28 58 38 48)(29 57 39 47)(30 56 40 46)
G:=sub<Sym(80)| (2,53)(4,55)(6,57)(8,59)(10,41)(12,43)(14,45)(16,47)(18,49)(20,51)(21,73)(23,75)(25,77)(27,79)(29,61)(31,63)(33,65)(35,67)(37,69)(39,71), (21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,76,11,66)(2,75,12,65)(3,74,13,64)(4,73,14,63)(5,72,15,62)(6,71,16,61)(7,70,17,80)(8,69,18,79)(9,68,19,78)(10,67,20,77)(21,45,31,55)(22,44,32,54)(23,43,33,53)(24,42,34,52)(25,41,35,51)(26,60,36,50)(27,59,37,49)(28,58,38,48)(29,57,39,47)(30,56,40,46)>;
G:=Group( (2,53)(4,55)(6,57)(8,59)(10,41)(12,43)(14,45)(16,47)(18,49)(20,51)(21,73)(23,75)(25,77)(27,79)(29,61)(31,63)(33,65)(35,67)(37,69)(39,71), (21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,61)(30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,76,11,66)(2,75,12,65)(3,74,13,64)(4,73,14,63)(5,72,15,62)(6,71,16,61)(7,70,17,80)(8,69,18,79)(9,68,19,78)(10,67,20,77)(21,45,31,55)(22,44,32,54)(23,43,33,53)(24,42,34,52)(25,41,35,51)(26,60,36,50)(27,59,37,49)(28,58,38,48)(29,57,39,47)(30,56,40,46) );
G=PermutationGroup([[(2,53),(4,55),(6,57),(8,59),(10,41),(12,43),(14,45),(16,47),(18,49),(20,51),(21,73),(23,75),(25,77),(27,79),(29,61),(31,63),(33,65),(35,67),(37,69),(39,71)], [(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,61),(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,76,11,66),(2,75,12,65),(3,74,13,64),(4,73,14,63),(5,72,15,62),(6,71,16,61),(7,70,17,80),(8,69,18,79),(9,68,19,78),(10,67,20,77),(21,45,31,55),(22,44,32,54),(23,43,33,53),(24,42,34,52),(25,41,35,51),(26,60,36,50),(27,59,37,49),(28,58,38,48),(29,57,39,47),(30,56,40,46)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10V | 20A | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | Q8 | D5 | D10 | D10 | D10 | Dic10 | 2+ 1+4 | D4⋊6D10 |
kernel | C23⋊2Dic10 | Dic5.14D4 | C20.48D4 | C2×C23.D5 | C10×C22⋊C4 | C22×C10 | C2×C22⋊C4 | C22⋊C4 | C22×C4 | C24 | C23 | C10 | C2 |
# reps | 1 | 8 | 4 | 2 | 1 | 4 | 2 | 8 | 4 | 2 | 16 | 2 | 8 |
Matrix representation of C23⋊2Dic10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 23 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 30 | 0 | 0 | 0 | 0 |
30 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,23,0,0,0,0,18,0,0,0,0,0,0,0,0,16,0,0,0,0,25,0],[1,30,0,0,0,0,30,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23⋊2Dic10 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2{\rm Dic}_{10}
% in TeX
G:=Group("C2^3:2Dic10");
// GroupNames label
G:=SmallGroup(320,1155);
// by ID
G=gap.SmallGroup(320,1155);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,758,675,570,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=d^10,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations